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Abstract-An approximate method of allowing for the effect of shear lag in photoelastic gauges is described.
Numerical results are presented for a wide range of gauge geometries.

NOTATION

a
b
f
g", h", ill
n
r
t
u
v
w
z
B
A(r/a),

B(r/a),
C(r/a)

N
R
SI, S2
T
U
V
W
Z
~, IjJ
(J

'l'

j.I,A

Subscripts
g
b
n

hole radius
gauge outside radius
fringe-stress coefficient for gauge material
stress coefficients defined by equations (13) and (35)
load harmonic
radius
gauge thickness
radial displacement
circumferential displacement
axial displacement
axial co-ordinate
b/a

fringe coefficients defined by equations (17) and (37)
fringe order
ria
principal residual stresses
t/a
u/a
via
w/a
z/a
displacement functions
angular co-ordinate
stress (the notation used is that of Ref. [9])
Lame elastic constants

gauge
metal
load harmonic
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INTRODUCTION

A METHOD of measuring residual stresses in metals using photoelastic strain gauges has
been developed by Nisida [IJ Nisida and Takabayashi [2J and by Gibbs et al. [3]. In this
method an annular disc of Araldite, or similar photoelastic material, is bonded onto the
surface of the metal in which the residual stresses are to be measured. A hole is then drilled
into the material underlying the central hole in the gauge. The removal of this metal
produces strains round the hole which are transmitted to the photoelastic material.

If the gauge is now viewed in polarised light, using a conventional reflection polariscope,
a fringe pattern is seen. This fringe pattern can be used to determine the magnitudes and
directions of the principal residual stresses in the metal.

The technique has the advantage of being practically non-destructive and requires
no special skills or equipment.

Unfortunately, although the strains present in the base material are transmitted faith
fully to the lower surface of the gauge, there is a progressive diminution of strain through
the thickness of the gauge. This effect, known as "shear lag," makes the interpretation of
the fringe patterns using elementary plane strain theory impossible. It is the purpose of
this paper to describe a method whereby the effects of shear lag can be estimated and to
obtain a simple relation between the fringe order measured and the residual stresses present
in the material.

THEORY

In order to make the problem more tractable the residual stresses are assumed uniform
in the region of the gauge and are regarded as being a linear combination of two basic
stress systems. The first system has both principal stresses equal to unity and the second
system has the principal stresses equal to unity but ofopposite sign. With the fringe patterns
calculated for these two systems, the fringe pattern for any other stress system can be
obtained by superposition. Conversely, the stresses producing a particular fringe pattern
may be estimated by reducing the measured fringe pattern to an appropriate combination
of the two basic patterns and taking the same combination of the stress systems.

Before starting the analysis of the gauge it is expedient to introduce the following
non-dimensional parameters:
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EQUAL PRINCIPAL STRESSES

When the hole is drilled the change of stress at the hole boundary is equal to the reverse
of the original stress in the material. For most photoelastic materials the modulus of
elasticity of the gauge will be small compared with that of the metal, and the reinforcing
effect of the gauge on the underlying metal may be ignored. The displacements round the
hole, for unit residual stress, will therefore be:

1 1
U =---

2J1b R

w=o.
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These displacements will form the boundary conditions at the base of the gauge. At
all the other gauge boundaries the loads will be zero, giving:

at Z = T 'Rl = 0

'zz = 0
(3)

at R = 1

at R = B

'RR = 0

'RZ = 0

'RR = 0

'RZ = o.
The problem of axially varying loads on short cylinders, of which this is an example,

has been extensively investigated by Filon [4], Galerkin [5], Prokopov [6], Barton [7]
and Lur'e [8] and many other authors and it appears that exact solutions are possible only
for some special loading conditions. The boundary conditions expressed in equations (2)
and (3) do not form one of these loading conditions and an approximate solution must be
sought.

Since the vertical deflection at the base of the gauge is zero, and the gauge is relatively
thin, an obvious approximation is to equate the axial displacements to zero everywhere
in the gauge. While this will produce considerable errors in the axial stress, the error in the
difference between the radial and circumferential stresses should be relatively small, and
hence the fringe order should be predicted with sufficient accuracy. With the assumption
of zero axial displacement, axial body forces have to be introduced and the axial loads on
the boundaries no longer influence the displacements of the gauge. The boundary condi
tions therefore reduce to:

at Z = 0
1 1

U=-x-
2fJ.b R

at Z = T

at R = 1

at R = B

'RZ = 0

'RR = 0

'RR = 0

(4)

These conditions can be satisfied by a cyclic load of:

at R = 1 'RR = -2fJ./fJ.b

'RR = 0

(4n-2) < Z < 4nT

4nT < Z < (4n+2)T

at R = B
(5)

4nT < Z < (4n+2)T

where n is an integer, acting on an infinite cylinder ofthe same outside and inside diameters
as the gauge. From considerations of symmetry the shear stress on the Z = T face will be
zero and the displacements at the Z = 0 face wiIl be equal to those produced by the mean
load. On expanding the above loading into two Fourier's series the expressions for radial
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stress at the inner and outer surfaces of the cylinder become:

at R = 1

at R = B

(6)

For the non-cyclic terms of these series the difference between the radial and circum
ferential stress is:

(7)

To find the equivalent stress difference for the cyclic terms, consider a loading of the
form:

at R = 1

at R = B

'RR = sin(kZ)

1 . k
'RR = B 2 sm( Z).

(8)

This loading, which by appropriate choice of k can be made to represent any of the terms
of the series, will produce a radial displacement in the cylinder;

u = ~ef> sin(kZ)
/lg

(9)

where ef> is a function of R only.
Assuming that the gauge material is homogeneous and isotropic, the radial, circum

ferential, and shear stresses are obtained from equation (9) together with the condition
that the axial displacement is zero:

'RR = [(2+Ag//l~ddef> + A
g

!]sin(kZ)
R /lg R

[
ef> A def>] .'00 = (2+).g//lJ-+---..!! -d sm(kZ)
R /lg R

'RZ = kef> cos (kZ).

(10)

On substituting these stresses into the equation for radial equilibrium a differential equation
for ef> is obtained:

(11)

The boundary conditions that must be satisfied by ef> at R = 1 and R = B can be obtained
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at R = B

at R = 1

from equations (8~ These equations yield:

(2+ Ilg) d¢ + Ilg¢ = 1
Jlg dR Jlg

(
2+ Ilg) d¢ + Ilgcl- ~

Jlg dR Jlg B - B2

(12)

(14)

Equation (11) was solved numerically for these boundary conditions using the Gill
Kutta procedure, and the values of ¢IR and d¢/dR obtained for a number of values of
radius.

At a given radius the difference between the radial and circumferential stresses for the
load given by equations (8) will be:

LRR-Lee = 2(~: -~)sin(kZ) (13)

Denoting 2(d¢/dR-¢IR) by g,,(R) for the case where k is equal to nrr.12T the principal
stress difference due to the total load on the cylinder becomes:

Jli 2
4 ~ 1 . ( Z )JLRR-Lee = -- 2-- L- -g,,(R)sm nrr.-Jl R rr. ,,= 1,3,5... n 2T

This equation represents the principal stress difference at every point in the gauge.
However the photoelastic effect observed depends on the product of the thickness of the
gauge and the mean value of the principal stress difference. This mean principal stress
difference is given by:

(15)

(16)

which on integration becomes:

Jlg[ 2 8 00 1 J
(LRR-Lee)mean = -- R2- rr.2 _ L n2g,,(R)

Jlb ,,-1.3.5...

In calculating the stress difference, the series was truncated after sufficient terms had
been summed for the error to be below 1%. For most gauges less than ten terms were
required.

Writing A(rla) for the sum

[
28 1 J--+-" -g (R)

R2 rr.2 L- n2 "

the actual fringe order (N) for a photoelastic material of fringe stress coefficient f and
thickness t will be:

A(rla). (17)

The value of A(rla) is plotted against ria for a range of values of tla for an araldite gauge of
large outside radius in Fig. 1. In Fig. 2 the value of (tla)A(rla), which for a constant hole
diameter is proportional to the actual fringe order, is plotted against tla.
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FIG. 1. Variation of A(rla) with radius.
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EQUAL BUT OPPOSITE PRINCIPAL RESIDUAL STRESSES OF UNIT
MAGNITUDE

The analysis in this case is identical in principal to that employed in the previous
section. However, an additional complication is introduced since angular displacements
of the gauge and metal must be considered.

The first step is to calculate the displacements of the metal at the metal-gauge inter
face due to drilling the hole. Prior to the removal of the metal the stresses at the hole
boundary are:

'R = cos 20

'RO = - sin 20.
(18)

When the hole is drilled these stresses are removed and strains produced round the hole.
Unless Poisson's ratio for the metal is zero there is no simple exact method of calculating
the displacements at the metal surface. However, following the technique of the previous
section it is assumed that the axial displacements are zero and with this assumption the
displacements of the metal will be:

U - _1_((A b +2Jib) ~-~)cos 20 (19)
- 2Jib (Ab +Jib) R R 3

V - _1_( _ 2Jib -.!.._~) sin 2(}
- 2Jib Ab+ Jib R R 3

W=o.

These displacements form the boundary conditions at the base of the gauge. At the
other boundaries the loads will be zero giving:

at R = 1

at R = B

at Z = T

'RR = 'RZ = 'RO = 0

'l'RR = 'RZ = 'RO = 0

'RZ = 'ZZ = 'ZO = O.

(20)

As in the previous section the axial displacements are assumed zero throughout the gauge
and the boundary conditions reduced to:

at R = 1

at R = B

'RR = 'RO = 0

'RR = 'RO = 0

(21)at Z = 0 u = _1_[ (Ab+ 2Jib) ~ - ~J cos 20
2Jib (Ab + Jib) R R 3

V = _1_[ - _2Jib ~ - ~J sin 2(}
2Jib Ab+Jib R R 3

at Z = T 'RZ = 'ZO = O.
The next step is to obtain a loading on an infinite cylinder, of the same inside and

outside diameters as the gauge, that will satisfy these boundary conditions. Considering
an infinitely long cylinder of gauge material with uniform displacements equal to those
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at the metal-gauge interface, the stresses are found to be:

(22)

On substituting these stresses into the equations for radial and circumferential equilibrium,
the body forces in the cylinder are obtained:

where

J1.g 1
FR = 2D- - cos 20

J1.b R3

Fo = 2D J1.g~ sin 20
J1.b R 3

(23)

The boundary conditions expressed in equations (21), and the absence of body forces
from Z = 0 to Z = T, can therefore be satisfied by loading the boundaries of an infinitely
long cylinder as follows:

at R = 1

at R = B

'RR = 2(D-l)J1.
g

cos 20
J1.b

'RO = 2J1.gsin 20
J1.b

'RR = 0

4nT < Z < (4n+2)T

(4n-2)T < Z < 4nT

4nT < Z < (4n+2)T

(4n-2)T < Z < 4nT

4nT < Z < (4n+2)T
(24)

[
1 1 JJ1.g 0'RR = 2 (D-4)-+3- -cos 2

B2 Jr J1.b

2[ 2 3JJ1.g .
'RO = --+- -sm 20

B2 Jr J1.b

(4n-2)T < Z < 4nT

4nT < Z < (4n+2)T

(4n-2)T < Z < 4nT
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where n is an integer, and by applying the following body forces inside the cylinder:

(4n-2)T < Z < 4nT.

4nT < Z < (4n+2)TFR = Fe = 0

J.l.
g

1 () }FR = 4D- 3COS 2
J.l.b R

J.l.g 1 . ()Fe = 4D- 3 sm2
J.l.b R

Expanding these loads and forces into Fourier's series yields:

(25)

at R = 1

at R = B

J.I. [ 4 00 1. ( Z )J'RR = (D-l)-! 1-- L -sm mr- cos 2()
J.l.b 1t n= 1,3.5 n 2T

LRe = J.l.g[I_~ f !sin(n1t~)Jsin 2()
J.l.b 1t n=1.3.5 n 2T

[
1 3 J J.l.g[ 4 ~ 1. ( Z )J 2'RR = (D-4)2+4 - 1-- L. -sm n1t-

2
cos ()

B B J.l.b 1t n= 1.3.5 n T

[
2 3 JJ.l.g [ 4 ~ 1. ( Z)J''Re = -2+4 - 1-- 1.. -sm n1t- sm2()

B B J.l.b 1tn=1,3,5n 2T

(26)

and in the body of the cylinder

J.l.g 1 [ 4 ~ 1. ( Z )JFR = 2D- R3 1-- L. - sm n1t-
2

cos 2()
J.l.b 1t n=1.3.5 n T

J.I. 1 [ 4 00 1. ( Z)J'Fe = 2D-! R3 1-- L - sm mr-
2

sm 2().
J.l.b 1t n=1.3.5 n T

(27)

For the non-cyclic terms the stresses are given by equation (22), and the difference
between the radial, and circumferential stresses, and the shear stress are:

J.l.g[ 4 6 J('RR-'ee) = - -2+4 cos 2()
J.l.b R R

J.l.g[ 2 3 J .'Rn = - --+- sm 2().
u J.l.b R 2 R4

To find the equivalent values for the cyclic terms consider a loading:

(28)

at R = 1

at R = B

'RR = (D-l) sin kZ cos 2()

'Re = sin kZ sin 2()

'RR = [(D-4) ~2 + ~4 J sin kZ cos 2()

'Re = [ - ;2 + :4J sin kZ sin 2()

(29)
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and body forces
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2D
FR = R 3 sin kZ cos 20

2D .
Fe = -, sin kZ sm 20.

R"

(30)

This loading, which by appropriate choice of k can be made to represent any of the cyclic
loads, will produce displacements:

1 .
U = - ¢ sm kZ cos 20

f.1g

1
V = -~ sin kZ sin 20

f.1g

(31)

where ¢ and ~ are functions of R only. Assuming that the gauge material is homogeneous
and isotropic the stresses may be obtained from these displacements, together with the
condition of zero axial strain: .

[(
Ie )d¢ Ie (2~ ¢)J'

'RR = 2+ f.1: dR + f.1: R+Ii sm kZ cos 20

'eo = [(2 + ~:)(~ +~) + ~:( ~:)J sin kZ cos 20

[(
2¢ d~ ~)J' k . 20

'RO = - Ii: +dR - Ii sm Z sm

'OZ = k~ cos kZ sin 20

'RZ = k¢ cos kZ cos 20.

(32)

Finally on inserting these stresses into the equations for radial and circumferential equili
brium, two differential equations relating ¢ and ~ are obtained:

(33)
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The boundary conditions that must be satisfied by ¢ and ~ can be obtained from
equations (32) and (29). These yield:

at R = 1

(2+ Ag)d¢ + Ag(2f+~) = 0-1
f.1g dR f.1g R R

at R = B

2¢ d~ ~
--+--- = 1

R dR R
(34)

(
Ag) d¢ Ag( ~ ¢) 1 32+- -+- 2-+- = (0-4)-+-
f.1g dR f.1g R R B2 Jr

2¢ d~ ~ 2 3
---+--- = --+-

R dR R B2 Jr'

Equations (33) were solved numerically for these boundary conditions using the Gill
Kutta procedure as before and values of ¢/R, d¢/dR, ~/R, and d~/dR at specified radii
obtained for sufficient values of n. At a given radius, the difference between the radial and
circumferential stresses will be given by:

(35)

and the shear stress 'RO will be given by:

Denoting the peak value of these two quantities by hn and in when k is equal to me/2T,
the difference between the radial and circumferential stresses, and the shear stress for the
complete loading will be:

f.1g[ 4 6 4 00 I . ( Z )J('ss-'oo) = - -R2 +R4 -- L -hnsm me
2T

cos 28
f.1b n n= 1.3.5 n

f.1g[ 2 3 4 00 1. . ( Z)J''RO = - -2+4-- L -In sm nn- sm 28
f.1b R R n n = t.3.5 n 2T

(36)

As before, the mean value of these quantities through the thickness is required, and on
integration:

(37)

On writing B(r/a) and C(r/a) for
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respectively, the actual fringe order at any point in the gauge will be:

N = [B2(~)COS2 20+ C2(~)sin2 28r~: ~ (38)

In this equation and in the following equations for fringe order, the effect of rotation of
the directions of principal stress through the thickness of the gauge has been neglected.
The error introduced in doing this will be zero at e = 0 and n/2 and small elsewhere. A
detailed discussion of this question is included in Ref. [3].

B(r/a) and C(r/a) are plotted against ria for a range of values of t/a in Figs. 3 and 4
for an Araldite gauge of large outside diameter bonded onto a material of Poisson's
ratio 0·3. Figures 5 and 6 show plots of B(r/a)t/a and C(r/a)t/a against t/a for the same
gauge.
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INTERPRETATION OF FRINGE PATTERNS

Where the principal residual stresses are neither equal nor opposite the fringe order
may be obtained by taking the appropriate combination of the fringe patterns for the two
stress systems. For principal residual stresses given by S 1 and S2 the fringe order at a radius
r and angle eto the stress S 1 will be:

It follows that the directions of the principal residual stresses coincide with the axes
of symmetry of the fringe pattern. Also the fringe orders at specific radii on the axes of
symmetry, and on the line at 45° to them, are related to the principal residual stresses by
the equations:

(40a)

(40b)

(40c)

where

N 1 is the fringe order measured where e = 0°

N 2 is the fringe order measured where e= 90°

N 3 is the fringe order measured where e= 45°

S1 is the residual stress acting in direction e= 0°

S2 is the residual stress acting in direction e = 90°

Using these equations the principal residual stresses can be found in terms of N 1

and N 2 by re-arranging the first two of these equations.

I.e.

Sl = f J1b[~N A(rja)+B(rja)+~N B(rja)-A(rja)]
2t J1g 2 1 A(rja)B(rja) 2 2 A(rja)B(rja)

S2 = f J1b[~N A(rja)+B(rja)+~N B(rja)-A(rja)].
2t J1g 2 2 A(rja)B(rja) 2 1 A(rja)B(rja)

Alternatively the sum of the residual stresses can be obtained from equations (40a and b)
and the difference obtained using equation (40c). This enables a check to be made on the
accuracy of the measurement. The equations for the principal residual stresses in this case
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are:

S2 - f J1b[N l +N2_1__ {N2_(N1 +N2)2}-!-_1_J
- 2t J1g 2 A(rja) 3 2 C(rja)

Values of(A+BjAB and (B-A)jAB have been plotted in Fig. 7 against rja for bja = 5
and tja = 1·5 for Araldite gauges bonded onto a material with a Poisson's ratio of 0·28.
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DISCUSSION OF RESULTS

Figures 1, 3 and 4 show plots of A(rla), B(rla) and C(rla) against ria for a range of
values of tla. The curves for tla = 0 represent the values that would be obtained neglecting
shear lag. It can be seen that even for relatively thin gauges of tla of 1 the error produced by
neglecting the shear lag effect is considerable, and would in practice lead to an under
estimation of the residual stresses of about 50 %.

From Fig. 2 in which tla A(rla) is plotted against tla, it is apparent that as the gauge
thickness is increased from zero, the fringe order produced by a unit equiaxial residual
stress increases, rapidly at first, but at a decreasing rate, until eventually further increases
in gauge thickness produce no corresponding increase in fringe order.

A similar result is found for the case of equal but opposite unit residual stresses, Figs.
5 and 6, except that the effect is somewhat complicated by the more complex relationship
of fringe order to radius. In practice there is little point in making the gauge thickness
greater than the hole diameter and for an investigation of the effect of the ratio bla a value
of tla of 1·5 was adopted.

In Figs. 8, 9 and 10 the coefficients A(rla), B(rla) and C(rla) are plotted against ria for
a range of values of the ratio of the outside radius to the inside radius of the gauge for
tla = 1·5.
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The outside diameter of the gauge has no effect on A(rla) and little effect on C(rla)
except at points close to the gauge outside diameter. For B(rla) on the other hand the ratio
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b/a has a considerable effect, and the influence of the position of the outer surface on the
value of B(r/a) at r/a = 2, (the point adopted for measuring fringe orders in practical
applications) does not become negligible until b/a is greater than 8. In view of the uncer
tainty of the exact position of the outer boundary due to a fillet of bonding material that is
of necessity present, the outside diameter of the gauge must be as large as possible. In
practice a value of b/a of 5 was adopted as a compromise between the requirements of a
small physical gauge size for practical application and a large gauge size for accuracy.

PRACTICAL ASPECTS-GAUGE MANUFACTURE AND APPLICATION

The gauge material selected was Araldite hot cure resin C.T. 200, mainly because the
authors had extensive experience in the use of this material for photoelastic work.

The method of manufacture was simple. Cylindrical casts of c.T. 200 1·5 in. dia. and
about 12 in. long were prepared. The diameter was then machined to 1·25 in. and a 0·242 in.
dia. hole drilled accurately along the axis of the cylinder. Gauges 0·187 in. thick were then
parted off using a diamond impregnated slitting wheel mounted on a modified surface
grinding machine. The gauge faces were polished using 600 grit paper and finally a six
micron wheel. Lastly the central holes in the gauges were brought to 0·250 in. dia. using a
hand reamer.

The gauges were cemented to the surface using Photo-elastic Incorporated P.C.10
adhesive which is a relatively fast curing epoxide containing a reflective filler.

In order to locate the centre of the drilled hole a drill bush 0·250 in. o.d. and 0·125 in.
i.d. was placed through the hole in the gauge. A 1/8 in. dia. pilot hole was then drilled into
the material under investigation. Material was then removed in stages with a range of
drills increasing in diameter. The final drilled hole (0,242 in. dia.) was then reamed to
0·250 in., care being taken not to touch the gauge excessively.

EXPERIMENTAL VERIFICATION

Experimental work has been conducted to verify the theoretical analysis. A high
strength aluminium alloy bar of 1·25 x 0·25 in. cross-section was loaded in a tensile testing
machine to a load of 2 ton (6'4 ton/in 2

) and photoelastic gauges cemented to its surface.
The bar was then unloaded and the 0·25 in. dia. central holes drilled through the bar and
reamed as described in the previous section. After reloading, the fringe orders were measured
on radii parallel, normal, and at 45° to the direction ofloading at points one hole radius away
from the hole boundary. The mean of the two, or four fringe orders was taken in each case.

The experimental results obtained are presented in Table 1, the mean ofthe values of the
fringe orders from a number of gauges being shown. In the same table the values of the

TABLE I

Experiment Shear lag Uncorrected
theory theory

Parallel 0·8 0·82 2·19

Normal 0·3 0·14 0·25

45° 1-3 H3 1·56
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fringe orders predicted using the theory presented here, and the values predicted without
allowing for the effect of "shear lag" are presented for comparison. The maximum differ
ence at any position between the experimental results and those predicted allowing for the
effect of "shear lag" was 0·17 fringe orders; the maximum difference between the experi
mental results and those predicted without allowing for the effect of shear lag was 1·4 fringe
orders.

Thus taking as 100 %the maximum experimental fringe order (1'3), the percentage error
has been reduced from 107 % to 13 % and is now within the normal experimental errors
associated with the method.

CONCLUSIONS

The "shear lag" effect in photoelastic gauges can lead to considerable errors in the
determination of residual stress unless allowance is made for it in relating fringe orders to
stress. Using the approximate theory presented in this paper these errors are reduced below
the normal experimental errors associated with the photoelastic method of measuring
residual stresses.
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experimental results presented in this paper.
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A6cTpaKT-AaeTcli npH6nHlKeHHblil. MeTO,n;, KOTOpblil. ,n;onycKaeT 34>cPeKT '1ennaHa~eil. OM c,n;BHra B
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